skip to main content


Search for: All records

Creators/Authors contains: "Murray, Norman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dark sector theories naturally lead to multicomponent scenarios for dark matter where a subcomponent can dissipate energy through self-interactions, allowing it to efficiently cool inside galaxies. We present the first cosmological hydrodynamical simulations of Milky Way analogs where the majority of dark matter is collisionless cold dark matter (CDM) but a subcomponent (6%) is strongly dissipative minimal atomic dark matter (ADM). The simulations, implemented inGIZMOand utilizing FIRE-2 galaxy formation physics to model the standard baryonic sector, demonstrate that the addition of even a small fraction of dissipative dark matter can significantly impact galactic evolution despite being consistent with current cosmological constraints. We show that ADM gas with roughly standard model–like masses and couplings can cool to form a rotating “dark disk” with angular momentum closely aligned with the visible stellar disk. The morphology of the disk depends sensitively on the parameters of the ADM model, which affect the cooling rates in the dark sector. The majority of the ADM gas gravitationally collapses into dark “clumps” (regions of black hole or mirror star formation), which form a prominent bulge and a rotating thick disk in the central galaxy. These clumps form early and quickly sink to the inner ∼kiloparsec of the galaxy, affecting the galaxy’s star formation history and present-day baryonic and CDM distributions.

     
    more » « less
  2. Abstract

    We present a new upper limit on the cosmic molecular gas density atz= 2.4–3.4 obtained using the first year of observations from the CO Mapping Array Project (COMAP). COMAP data cubes are stacked on the 3D positions of 243 quasars selected from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalog, yielding a 95% upper limit for flux from CO(1–0) line emission of 0.129 Jy km s−1. Depending on the balance of the emission between the quasar host and its environment, this value can be interpreted as an average CO line luminosityLCOof eBOSS quasars of ≤1.26 × 1011K km pc2s−1, or an average molecular gas densityρH2in regions of the Universe containing a quasar of ≤1.52 × 108McMpc−3. TheLCOupper limit falls among CO line luminosities obtained from individually targeted quasars in the COMAP redshift range, and theρH2value is comparable to upper limits obtained from other line intensity mapping (LIM) surveys and their joint analyses. Further, we forecast the values obtainable with the COMAP/eBOSS stack after the full 5 yr COMAP Pathfinder survey. We predict that a detection is probable with this method, depending on the CO properties of the quasar sample. Based on the achieved sensitivity, we believe that this technique of stacking LIM data on the positions of traditional galaxy or quasar catalogs is extremely promising, both as a technique for investigating large galaxy catalogs efficiently at high redshift and as a technique for bolstering the sensitivity of LIM experiments, even with a fraction of their total expected survey data.

     
    more » « less
  3. Abstract

    Observations of local star-forming galaxies (SFGs) show a tight correlation between their singly ionized carbon line luminosity ($L_{\rm [C\, \small {II}]}$) and star formation rate (SFR), suggesting that $L_{\rm [C\, \small {II}]}$ may be a useful SFR tracer for galaxies. Some other galaxy populations, however, are found to have lower $L_{\rm [C\, \small {II}]}{}/{}\rm SFR$ than local SFGs, including the infrared-luminous, starburst galaxies at low and high redshifts as well as some moderately star-forming galaxies at the epoch of re-ionization (EoR). The origins of this ‘$\rm [C\, \small {II}]$ deficit’ is unclear. In this work, we study the $L_{\rm [C\, \small {II}]}$-SFR relation of galaxies using a sample of z = 0 − 8 galaxies with M* ≈ 107 − 5 × 1011 M⊙ extracted from cosmological volume and zoom-in simulations from the Feedback in Realistic Environments (fire) project. We find a simple analytic expression for $L_{\rm [C\, \small {II}]}$/SFR of galaxies in terms of the following parameters: mass fraction of $\rm [C\, \small {II}]$-emitting gas ($f_{\rm [C\, \small {II}]}$), gas metallicity (Zgas), gas density (ngas) and gas depletion time ($t_{\rm dep}{}={}M_{\rm gas}{}/{}\rm SFR$). We find two distinct physical regimes: $\rm H_2$-rich galaxies where tdep is the main driver of the $\rm [C\, \small {II}]$ deficit and $\rm H_2$-poor galaxies where Zgas is the main driver. The observed $\rm [C\, \small {II}]$ deficit of IR-luminous galaxies and early EoR galaxies, corresponding to the two different regimes, is due to short gas depletion time and low gas metallicity, respectively. Our result indicates that the $\rm [C\, \small {II}]$ deficit is a common phenomenon of galaxies, and caution needs to be taken when applying a constant $L_{\rm [C\, \small {II}]}$-to-SFR conversion factor derived from local SFGs to estimate cosmic SFR density at high redshifts and interpret data from upcoming $\rm [C\, \small {II}]$ line intensity mapping experiments.

     
    more » « less
  4. ABSTRACT

    Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (Mhalo ∼ 1012M⊙), focusing on simulations with cosmic ray physics. We find that at z ∼ 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1–3 km s−1 and net mass fluxes through the disc of ∼M⊙ yr−1, comparable to the galaxies’ star formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1–7 km s−1, ∼4–5 M⊙ yr−1). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies.

     
    more » « less
  5. ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback. 
    more » « less
  6. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${\sim } 100 \, \rm km\, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less
  7. null (Ed.)
    ABSTRACT We present the first measurement of the lifetimes of giant molecular clouds (GMCs) in cosmological simulations at z = 0, using the Latte suite of FIRE-2 simulations of Milky Way (MW) mass galaxies. We track GMCs with total gas mass ≳105 M⊙ at high spatial (∼1 pc), mass (7100 M⊙), and temporal (1 Myr) resolution. Our simulated GMCs are consistent with the distribution of masses for massive GMCs in the MW and nearby galaxies. We find GMC lifetimes of 5–7 Myr, or 1–2 freefall times, on average, with less than 2 per cent of clouds living longer than 20 Myr. We find decreasing GMC lifetimes with increasing virial parameter, and weakly increasing GMC lifetimes with galactocentric radius, implying that environment affects the evolutionary cycle of GMCs. However, our GMC lifetimes show no systematic dependence on GMC mass or amount of star formation. These results are broadly consistent with inferences from the literature and provide an initial investigation into ultimately understanding the physical processes that govern GMC lifetimes in a cosmological setting. 
    more » « less
  8. null (Ed.)
  9. ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase. 
    more » « less
  10. Abstract We present the current state of models for the z ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connection and previous CO (1–0) observations. The Pathfinder early science data spanning wavenumbers k = 0.051–0.62 Mpc −1 represent the first direct 3D constraint on the clustering component of the CO (1–0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude A clust ≲ 70 μ K 2 greatly improves on the indirect upper limit of 420 μ K 2 reported from the CO Power Spectrum Survey (COPSS) measurement at k ∼ 1 Mpc −1 . The COMAP limit excludes a subset of models from previous literature and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity–bias product, Tb 2 ≲ 50 μ K 2 , and the cosmic molecular gas density, ρ H2 < 2.5 × 10 8 M ⊙ Mpc −3 (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the 5 yr Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise ratio of 9–17. Between then and now, we also expect to detect the CO–galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star formation and galaxy evolution history. 
    more » « less