Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first suite of cosmological hydrodynamical zoom-in simulations of isolated dwarf galaxies for a dark sector that consists of cold dark matter and a strongly dissipative subcomponent. The simulations are implemented in GIZMO and include standard baryons following the FIRE-2 galaxy formation physics model. The dissipative dark matter is modeled as atomic dark matter (aDM), which forms a dark hydrogen gas that cools in direct analogy to the Standard Model. Our suite includes seven different simulations of ∼1010M⊙systems that vary over the aDM microphysics and the dwarf’s evolutionary history. We identify a region of aDM parameter space where the cooling rate is aggressive and the resulting halo density profile is universal. In this regime, the aDM gas cools rapidly at high redshifts, and only a small fraction survives in the form of a central dark gas disk; the majority collapses centrally into collisionless dark “clumps,” which are clusters of subresolution dark compact objects. These dark clumps rapidly equilibrate in the inner galaxy, resulting in an approximately isothermal distribution that can be modeled with a simple fitting function. Even when only a small fraction (∼5%) of the total dark matter is strongly dissipative, the central densities of classical dwarf galaxies can be enhanced by over an order of magnitude, providing a sharp prediction for observations.more » « lessFree, publicly-accessible full text available March 27, 2026
-
Abstract Stellar feedback influences the star formation rate (SFR) and the interstellar medium of galaxies in ways that are difficult to quantify numerically, because feedback is an essential ingredient of realistic simulations. To overcome this, we conduct a feedback-halting experiment starting with a Milky Way–mass galaxy in the second-generation Feedback In Realistic Environments (FIRE-2) simulation framework. By terminating feedback, and comparing to a simulation in which feedback is maintained, we monitor how the runs diverge. We find that without feedback, the interstellar turbulent velocities decay. There is a marked increase of dense material, while the SFR increases by over an order of magnitude. Importantly, this SFR boost is a factor of ∼15–20 larger than is accounted for by the increased freefall rate caused by higher densities. This implies that feedback moderates the star formation efficiency per freefall time more directly than simply through the density distribution. To probe changes at the scale of giant molecular clouds (GMCs), we identify GMCs using density and virial parameter thresholds, tracking clouds as the galaxy evolves. Halting feedback stimulates rapid changes, including a proliferation of new bound clouds, a decrease of turbulent support in loosely bound clouds, an overall increase in cloud densities, and a surge of internal star formation. Computing the cloud-integrated SFR using several theories of turbulence regulation, we show that these theories underpredict the surge in SFR by at least a factor of 3. We conclude that galactic star formation is essentially feedback regulated on scales that include GMCs, and that stellar feedback affects GMCs in multiple ways.more » « less
-
ABSTRACT Fuelling star formation in large, discy galaxies requires a continuous supply of gas accreting into star-forming regions. Previously, we characterized this accretion in four Milky Way mass galaxies ($$M_{\rm halo}\sim 10^{12}{\rm M}_{\odot }$$) in the FIRE-2 cosmological zoom-in simulations. At $$z\sim 0$$, we found that gas within the inner circumgalactic medium (iCGM) approaches the disc with comparable angular momentum (AM) to the disc edge, joining in the outer half of the gaseous disc. Within the disc, gas moves inwards at velocities of $$\sim$$1–5 km s$$^{-1}$$ while fully rotationally supported. In this study, we analyse the torques that drive these flows. In all cases studied, we find that the torques in discs enable gas accreted near the disc edge to transport inwards and fuel star formation in the central few kpc. The primary sources of torque come from gravity, hydrodynamical forces, and the sub-grid $$P \mathrm{ d}V$$ work done by supernova (SN) remnants interacting with gas on $$\lesssim$$10 pc scales. These SNe remnant interactions induce negative torques within the inner disc and positive torques in the outer disc. The gas–gas gravitational, hydro, and ‘feedback’ torques transfer AM outwards to where accreting gas joins the disc, playing an important role in driving inflows and regulating disc structure. Gravitational torques from stars and dark matter provide an AM sink within the innermost regions of the disc and iCGM, respectively. Feedback torques are dominant within the disc, while gravitational and hydrodynamical torques have similar significance depending on the system/region. Torques from viscous shearing, magnetic forces, stellar winds, and radiative transfer are less significant.more » « less
-
Abstract Simulations and observations suggest that galaxy interactions may enhance the star formation rate (SFR) in merging galaxies. One proposed mechanism is the torque exerted on the gas and stars in the larger galaxy by the smaller galaxy. We analyze the interaction torques and star formation activity on six galaxies from the FIRE-2 simulation suite with masses comparable to the Milky Way galaxy at redshiftz= 0. We trace the halos fromz= 3.6 toz= 0, calculating the torque exerted by the nearby galaxies on the gas in the central galaxy. We calculate the correlation between the torque and the SFR across the simulations for various mass ratios. For near-equal-stellar-mass-ratio interactions in the galaxy sample, occurring betweenz= 1.2−3.6, there is a positive and statistically significant correlation between the torque from nearby galaxies on the gas of the central galaxies and the SFR. For all other samples, no statistically significant correlation is found between the torque and the SFR. Our analysis shows that some, but not all, major interactions cause starbursts in the simulated Milky Way-mass galaxies, and that most starbursts are not caused by galaxy interactions. The transition from “bursty” at high redshift (z≳ 1) to “steady” star formation state at later times is independent of the interaction history of the galaxies, and most of the interactions do not leave significant imprints on the overall trend of the star formation history of the galaxies.more » « less
-
Recent radiation-thermochemical-magnetohydrodynamic simulations resolved formation of quasar accretion disks from cosmological scales down to ~300 gravitational radii , arguing they were ‘hyper-magnetized’ (plasma supported by toroidal magnetic fields) and distinct from traditional -disks. We extend these, refining to around a BH with multi-channel radiation and thermochemistry, and exploring a factor of 1000 range of accretion rates ( ). At smaller scales, we see the disks maintain steady accretion, thermalize and self-ionize, and radiation pressure grows in importance, but large deviations from local thermodynamic equilibrium and single-phase equations of state are always present. Trans-Alfvenic and highly-supersonic turbulence persists in all cases, and leads to efficient vertical mixing, so radiation pressure saturates at levels comparable to fluctuating magnetic and turbulent pressures even for . The disks also become radiatively inefficient in the inner regions at high . The midplane magnetic field remains primarily toroidal at large radii, but at super-Eddington we see occasional transitions to a poloidal-field dominated state associated with outflows and flares. Large-scale magnetocentrifugal and continuum radiation-pressure-driven outflows are weak at , but can be strong at . In all cases there is a scattering photosphere above the disk extending to at large , and the disk is thick and flared owing to magnetic support (with nearly independent of ), so the outer disk is strongly illuminated by the inner disk and most of the inner disk continuum scatters or is reprocessed at larger scales, giving apparent emission region sizes as large as .more » « less
-
Abstract Using cosmological hydrodynamical zoom-in simulations, we explore the properties of subhalos in Milky Way analogs that contain a subcomponent of atomic dark matter (ADM). ADM differs from cold dark matter (CDM) due to the presence of self-interactions that lead to energy dissipation, analogous to standard model baryons. This model can arise in dark sectors that are natural and theoretically motivated extensions to the standard model. The simulations used in this work were carried out usingGIZMOand utilize the FIRE-2 galaxy formation physics in the standard model baryonic sector. For the parameter points we consider, the ADM gas cools efficiently, allowing it to collapse to the center of subhalos. This increases a subhalo’s central density and affects its orbit, with more subhalos surviving small pericentric passages. The subset of subhalos that host satellite galaxies have cuspier density profiles and smaller stellar half-mass radii relative to CDM. The entire population of dwarf galaxies produced in the ADM simulations is more compact than those seen in CDM simulations, unable to reproduce the entire diversity of observed dwarf galaxy structures. Additionally, we also identify a population of highly compact subhalos that consist nearly entirely of ADM and form in the central region of the host, where they can leave distinctive imprints in the baryonic disk. This work presents the first detailed exploration of subhalo properties in a strongly dissipative dark matter scenario, providing intuition for how other regions of ADM parameter space, as well as other dark sector models, would impact galactic-scale observables.more » « less
An official website of the United States government
